Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.

Identifieur interne : 000311 ( Main/Exploration ); précédent : 000310; suivant : 000312

A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.

Auteurs : Sittiporn Pettongkhao [Thaïlande, États-Unis] ; Natasha Navet [États-Unis] ; Sebastian Schornack [Royaume-Uni] ; Miaoying Tian [États-Unis] ; Nunta Churngchow [Thaïlande]

Source :

RBID : pubmed:32047196

Abstract

Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.

DOI: 10.1038/s41598-020-59007-1
PubMed: 32047196
PubMed Central: PMC7012922


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.</title>
<author>
<name sortKey="Pettongkhao, Sittiporn" sort="Pettongkhao, Sittiporn" uniqKey="Pettongkhao S" first="Sittiporn" last="Pettongkhao">Sittiporn Pettongkhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112</wicri:regionArea>
<wicri:noRegion>90112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>East-West Center, Honolulu, Hawaii, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>East-West Center, Honolulu, Hawaii</wicri:regionArea>
<placeName>
<region type="state">Hawaï</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Navet, Natasha" sort="Navet, Natasha" uniqKey="Navet N" first="Natasha" last="Navet">Natasha Navet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sainsbury Laboratory Cambridge University (SLCU), Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA. mtian@hawaii.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Churngchow, Nunta" sort="Churngchow, Nunta" uniqKey="Churngchow N" first="Nunta" last="Churngchow">Nunta Churngchow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand. nunta.c@psu.ac.th.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112</wicri:regionArea>
<wicri:noRegion>90112</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32047196</idno>
<idno type="pmid">32047196</idno>
<idno type="doi">10.1038/s41598-020-59007-1</idno>
<idno type="pmc">PMC7012922</idno>
<idno type="wicri:Area/Main/Corpus">000278</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000278</idno>
<idno type="wicri:Area/Main/Curation">000278</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000278</idno>
<idno type="wicri:Area/Main/Exploration">000278</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.</title>
<author>
<name sortKey="Pettongkhao, Sittiporn" sort="Pettongkhao, Sittiporn" uniqKey="Pettongkhao S" first="Sittiporn" last="Pettongkhao">Sittiporn Pettongkhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112</wicri:regionArea>
<wicri:noRegion>90112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>East-West Center, Honolulu, Hawaii, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>East-West Center, Honolulu, Hawaii</wicri:regionArea>
<placeName>
<region type="state">Hawaï</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Navet, Natasha" sort="Navet, Natasha" uniqKey="Navet N" first="Natasha" last="Navet">Natasha Navet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sainsbury Laboratory Cambridge University (SLCU), Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA. mtian@hawaii.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822</wicri:regionArea>
<wicri:noRegion>96822</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Churngchow, Nunta" sort="Churngchow, Nunta" uniqKey="Churngchow N" first="Nunta" last="Churngchow">Nunta Churngchow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand. nunta.c@psu.ac.th.</nlm:affiliation>
<country xml:lang="fr">Thaïlande</country>
<wicri:regionArea>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112</wicri:regionArea>
<wicri:noRegion>90112</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32047196</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.</ArticleTitle>
<Pagination>
<MedlinePgn>2319</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-020-59007-1</ELocationID>
<Abstract>
<AbstractText>Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pettongkhao</LastName>
<ForeName>Sittiporn</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>East-West Center, Honolulu, Hawaii, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Navet</LastName>
<ForeName>Natasha</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schornack</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Miaoying</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA. mtian@hawaii.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Churngchow</LastName>
<ForeName>Nunta</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand. nunta.c@psu.ac.th.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32047196</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-020-59007-1</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-020-59007-1</ArticleId>
<ArticleId IdType="pmc">PMC7012922</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Biol. 2017 May 11;15(1):39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Apr;206(2):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25495186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 1;12(5):e0175795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28459807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1995 Dec;13(13):1484-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2016 Jun 07;12(8):931-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27489497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Jun;17(6):1130-1141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30467956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3846-E3855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29615512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Feb 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 16;21(24):6681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12485989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1997 Oct;22(2):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Oct;8(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7496401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Nov 18;15:980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Dec;10(9):1045-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9390419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jan 23;5:8003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25614217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 23;11(6):e0157591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27337148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jul;27(7):2057-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26163574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Apr;59(7):689-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2002;:310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2004 Feb 29;17(1):166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15055545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1997 Sep;87(9):899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Dec;28(12):1271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26313411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Oct;109(10):1769-1778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31246138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Dec;88(12):1315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1999 Oct;9(10):1009-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Apr;37(4):420-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 May;29(5):385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jan 30;9:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29441088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17(1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26507366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 16;4:139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Dec;108(12):1412-1419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29979095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Aug 12;78(3):449-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8062387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1703-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2002 Apr;35(3):287-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 May;54(1):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10846744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Mar;31(3):363-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29068239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1969 Jul;30(1):148-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4183001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2017 Feb 6;44:21A.1.1-21A.1.26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28166383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2016 Sep 06;16(1):204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27599726</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Thaïlande</li>
<li>États-Unis</li>
</country>
<region>
<li>Hawaï</li>
</region>
</list>
<tree>
<country name="Thaïlande">
<noRegion>
<name sortKey="Pettongkhao, Sittiporn" sort="Pettongkhao, Sittiporn" uniqKey="Pettongkhao S" first="Sittiporn" last="Pettongkhao">Sittiporn Pettongkhao</name>
</noRegion>
<name sortKey="Churngchow, Nunta" sort="Churngchow, Nunta" uniqKey="Churngchow N" first="Nunta" last="Churngchow">Nunta Churngchow</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Pettongkhao, Sittiporn" sort="Pettongkhao, Sittiporn" uniqKey="Pettongkhao S" first="Sittiporn" last="Pettongkhao">Sittiporn Pettongkhao</name>
</noRegion>
<name sortKey="Navet, Natasha" sort="Navet, Natasha" uniqKey="Navet N" first="Natasha" last="Navet">Natasha Navet</name>
<name sortKey="Pettongkhao, Sittiporn" sort="Pettongkhao, Sittiporn" uniqKey="Pettongkhao S" first="Sittiporn" last="Pettongkhao">Sittiporn Pettongkhao</name>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32047196
   |texte=   A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32047196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024